On Kernel Discriminant Analyses Applied to Phoneme Classification
نویسنده
چکیده
In this paper we recall two kernel methods for discriminant analysis. The first one is the kernel counterpart of the ubiquitous Linear Discriminant Analysis (Kernel-LDA), while the second one is a method we named Kernel Springy Discriminant Analysis (Kernel-SDA). It seeks to separate classes just as Kernel-LDA does, but by means of defining attractive and repulsive forces. First we give technical details about these methods and then we employ them on phoneme classification tasks. We demonstrate that the application of kernel functions significantly improves the recognition accuracy.
منابع مشابه
Phoneme Classification Using Kernel Principal Component Analysis
A substantial number of linear and nonlinear feature space transformation methods have been proposed in recent years. Using the so-called ”kernel-idea” well-known linear techniques such as Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA) and Independent Component Analysis(ICA) can be non-linearized in a general way. The aim of this paper here is twofold. First, we describe t...
متن کاملA Nonlinearized Discriminant Analysis and Its Application to Speech Impediment Therapy
Abstract. This paper studies the application of automatic phoneme classification to the computer-aided training of the speech and hearing handicapped. In particular, we focus on how efficiently discriminant analysis can reduce the number of features and increase classification performance. A nonlinear counterpart of Linear Discriminant Analysis, which is a general purpose class specific feature...
متن کاملEEG-Based Discrimination of Imagined Speech Phonemes
This paper reports positive results for classifying imagined phonemes on the basis of EEG signals. Subjects generated in imagination five types of phonemes that differ in their primary manner of vocal articulation during overt speech production (jaw, tongue, nasal, lips and fricative). Naive Bayes and linear discriminant analysis classification methods were applied to EEG signals that were reco...
متن کاملIntrusion Detection in IOT based Networks Using Double Discriminant Analysis
Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کامل